ANAGENE

Le logiciel anagène permet d'afficher des séquences nucléotidiques d'ADN. Il lit les fichiers qui ont pour extension .edi. Il permet de comparer des séquences nucléotidiques.

Objectif : Organiser son travail avec le logiciel anagène

Pour travailler en autonomie, suivre les conseils :

1ère étape : savoir comparer avec anagène des séquences de nucléotides

1) Après avoir ouvert le fichier .edi, vous obtenez à l'écran :

Les 5 séquences nucléotidique	ues qui s'affichent corres	oondent à 5 allèles d'un m	iême gène. Ces	allèles sont	
nommés 1219.adn, 1	267.adn etc. (les mettre dar	ns l'ordre indiqué ci-dessous à l'	aide de l'ascenseu	r vertical)	
Fichier Edition Traiter Op	otions Fenêtre Aide				
	😂 X 🖻 🖻 🕻	Dog 🗞 🐎 c x area 🕺	1 AUG	~B~ 🗍 🕅	
Affichage des séquences			^		
	1 10	20 30	40	50	60
1219.adn • 0	ATGCCTTCACTCTCCC	AAGCCTATAGAGCACACC	CGTGCACGTTA	ACCACAAGCAC	сстб
1267 adn + • 0	ATGCCTTCACTCTCCC	GAAGCCTATAGAGCACACCC	CGTGC <mark>acgtta</mark>	ACCACAAGCAC	CCTG
1268.adri + 0	ATGCCTTCACTCTCCC	GAAGCCTATAGAGCACACCC	CGTGCACGTTA	ACCACAAGCAC	CCTG
7765.adn + • 0	ATGCCTTCACTCTCCC	GAAGCCTATAGAGCACACCC	CGTGCACGTTA	ACCACAAGCAC	CCTG
7766.adn	ATGCCTTCACTCTCCC	GAAGCCTATAGAGCACACCC	CGTGCACGTTA	ACCACAAGCAC	CCTG
Sélection : 0/5 lignes	<u>_</u> .				

2) <u>Sélectionner à l'aide de la souris la première séquence puis cliquer sur l'icône « i ». Une nouvelle fenêtre</u>

<u>s'affiche :</u>	7765.adn	Nom
	Séquence d'ADN	Nature Nomb
	Composition, en % du nombre total de bases : C 25,3 G 19,0 A 28.0 T 27.7	—— % des
	CG / AT = 0,80 bases inconnues : 0,0 %	En sél séque
	l Commentaires :	nuclé

Nom de l'allèle (1219.adn pour commencer) Nature de la séquence (type de molécule) Nombre de bases = **nombre de nucléotides**

% des différents nucléotides

En sélectionnant successivement les séquences, vous obtiendrez le nombre de nucléotides de chaque allèle.

3) <u>Sur votre cahier, construire un tableau indiquant pour chaque allèle le nombre de nucléotides :</u>

N°allèle	Nombre de nucléotides
1219.adn	1125

- ⇒ Notez vos observations et vos déductions sur votre cahier.
- 4) <u>Sélectionner les 5 séquences car on souhaite maintenant savoir si ces séquences de nucléotides sont</u> <u>identiques.</u> Sélectionner ensuite dans la barre des menus « <u>Traiter</u> », une nouvelle fenêtre s'affiche :

ier Edition	Traiter Options Fenêtre Aide	- Fuis « Anghement avec discontinui	le » puis OK
\$2	Convertir les séquences F7 - ATGC -c Comparer les séquences F8	Options de comparaison	
Affichage des	Action enzymatique F9 Graphique de ressemblance F4	Type de comparaison :	<u><u> </u></u>
1219.adn			Annuler
1267.adn	✓ ▶ 0 ATGCCTTCACTCTCCGAAGCCTATAGA		
7766.adn	ATGCCTTCACTCTCCGAAGCCTATAGA		protection pr
1268 adp	A FULL AT A CONTRACT CTCCCCAAAACCCTATAGA	Alignement par paires accéléré	Ignorer le

Après quelques secondes, une nouvelle fenêtre s'affiche :

La 1 ^{ère} séguence sert de référence ; les traits indiguent que les séguences suivantes sont identigues à la ség	uence
Ide référence : les numéros indiquent la place du nucléotide dans la ség	uonco
de reference, les numeros indiquent la place du nucleotide dans la seg	Jence
😣 Comparaison avec alignement	
	1
Traitement Alignement multiple de séquences d'ADN	
Identités 4 2 0 *********************************	*****
1219.adn ATGCCTTCCCGAAGCCTATAGAGCACCCCGTGCACGTTAACCACAAGCACCCCGAAGCACCCCGAAGCACCCCGAAGCACCCCGAAGCACCCCGAAGCACCAC	TCAAC
1267.adn < > 0	
1268.adn 0	
7765.adn • 0	
7766.adn 0	
Sélection : 0/7 lignes	
Déplacer l'ascenseur horizontal vers la droite à l'aide de la souris	
En déplaçant l'ascenseur, vous obtenez par exemple :	
Comparaison avec alignement 690 700 710 720 730 740 750 760 770 780 790 800 810 Trakement 4 0	820
1219.adh 4 0 TCTCGCCCCGCACACAGACTCAACATTTTTAACCATCCTATCTCAAAAACGACATAAGCGGGTTACAGGTTAACCGCGAGGGTTCTGGGTGGATCACGGTTCCACCGCTCCAAGGAGGTCTGGTCGTCGTCGACGTGGGCG	ACCTCTTTCA
1288 adm 4 2 0	T
//bb.adn 4 / U	T
Sélecton: 0/7 lignes	
Ces modifications de la séquences nucélotidique d'un gène sont appelées mutations génétiques : ces mut	ations
est deue à Vertière des etbles deue et en autre a un Seite sont appendes matations Beneriques i des mat	
sont donc a l'origine des alleles d'un gene	

5) Construire alors un tableau de comparaison à compléter des différents allèles du gène étudié :

Type de mutation	Par rapport à l'allèle de référence 1219.adn
et emplacement	
Allèle 1267.adn	Un nucléotide à adénine remplace un nucléotide à guanine n°685
Allèle 1268.adn	Un nucléotide à thymine remplace un nucléotide à adénine n°267,
Allèle 7765.adn	Un nucléotide à
Allèle 7766.adn	Un nucléotide à

Sur votre cahier, expliquez alors en quoi cet exemple montre qu'il existe une biodiversité génétique chez le chêne.

Poursuivre votre travail avec anagène : pour cela relire la fiche que vous avez complétée à propos de la relation gène – protéine.

2ème étape : traduire les séquences nucléotidiques en séquences d'acides aminés à l'aide d'Anagène (niveau difficile)

6) Sélectionner à nouveau les 5 séquences nucléotidiques, puis dans la barre des menus, sélectionner « Traiter » puis « Convertir les séquences ». Vous obtenez à l'écran :

Options de conversion d'u	ine séquence nucléique		Cocher cette case (elle permet d'afficher les 5
☐ Séquence(s) à affic	her:		séquences en acides aminés (donc 5 protéines)
Brin non tran	iscrit de l'ADN		
Brin transc	crit de l'ADN	Annuler	
ARN m	nessager		
Séquence	e peptidique	Placer le résultat	Puis sélectionner « Séquence peptidique » puis
	traduction au premier ATG		« UK »
	traduction des phases ouvertes		
	Position des phases ouvertes de lecture		Le logiciel va alors traduire la séquence de
			nucléotides en séquences en acides aminés

Vous obtenez alors :

				1 10	20	30	40 •••••	50
1219.adn	4	+	0	ATGCCTTCACTCTCC	GAAGCCTATA	GAGCACACCC	CGTGCACGTTA	ACCACAA
1267.adn	4	•	0	ATGCCTTCACTCTCC	GAAGCCTATA	GAGCACACCC	CGTGCACGTTA	ACCACAA
1268.adn	1	•	0	ATGCCTTCACTCTCC	GAAGCCTATA	GAGCACACCC	CGTGCACGTTA	ACCACAA
7765.adn	4	•	0	ATGCCTTCACTCTCC	GAAGCCTATA	GAGCACACCC	CGTGCACGTTA	ACCACAA
7766.adn	4	+	0	ATGCCTTCACTCTCC	GAAGCCTATA	GAGCACACCC	CGTGCACGTTA	ACCACAA
Pro-1219.adn	4	+	0	MetPmoSerLeuSer	GluAlaTyrA	rgAlaHisPr	oValHisValA	snHisLy
Pro-1267.adn	4	•	0	MetProSerLeuSer	GluAlaTyrA	rgAlaHisPr	oValHisValA	snHisLy
Pro-1268.adn	4	+	0	MetProserLeuser	GluAlaTyrA	rgAlaHisPr	oValHisValA	snHisLy
Pro-7765.adn	4	+	0	MetProSerLeuSer	GlualaTyrA	rgAlaHisPr	oValHisValA	snHisLy
Pro-7766.adn	1	•	0	MetProSerLeuSer	GluglaTyre	rgAlaHisPr	oValHisValA	snHisLy
Sélection : 0/1	0 lign	es		<u> </u>				
1219 corresp	ond	à	a tra	aduction de l'allèle 1	219.adn	Met, Pro, S	er etc : abrév	iations des acid
							amine	áς

Votre hypothèse de travail est : les mutations génétiques du gène entraînent des modifications de la séquence en acides aminés des protéines correspondantes. Vous devez vérifier cette hypothèse en utilisant les fonctionnalités d'Anagène.

Vous allez maintenant réinvestir ce que vous avez appris sur les fonctionnalités du logiciel pour :

- a- Comparer les 5 séquences d'acides aminés
- b- Indiquer si vous observez effectivement des modifications en donnant deux exemples
- c- L'hypothèse est-elle validée dans cette étude ?
- d- En sachant que la fonctionnalité d'une protéine dépend de sa séquence en acides aminés, que peut-on émettre comme nouvelle hypothèse sur la synthèse de la gibbérelline ? (il faut relire l'intitulé de la fiche Séance 2 !!!)